Optimization of Inspection and Maintenance Decisions for Infrastructure Facilities under Performance Model Uncertainty: A Quasi-Bayes Approach
نویسندگان
چکیده
We present an optimization model to find joint inspection and maintenance policies for infrastructure facilities under performance model uncertainty. The objective in the formulation is to minimize the total expected social cost of managing facilities over a finite planning horizon. As in recent optimization models, performance model uncertainty is accounted for by representing facility deterioration as a mixture of known models taken from a finite set. The mixture proportions are assumed to be continuous random variables, with probability densities that are updated over time. In this paper, we relax the assumptions of fixed and error-free inspections. We present a parametric study to analyze the effect of initial performance model uncertainty and bias on the expected total cost of managing a facility. The main observation is that reducing the initial variance in model uncertainty may be more important than reducing the initial bias. Our study also shows that cost savings can result from relaxing the constraint of a fixed inspection schedule.
منابع مشابه
Integrated Inspection Planning and Preventive Maintenance for a Markov Deteriorating System Under Scenario-based Demand Uncertainty
In this paper, a single-product, single-machine system under Markovian deterioration of machine condition and demand uncertainty is studied. The objective is to find the optimal intervals for inspection and preventive maintenance activities in a condition-based maintenance planning with discrete monitoring framework. At first, a stochastic dynamic programming model whose state variable is the ...
متن کاملA Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm
The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...
متن کاملA novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty
This paper investigates the integration of strategic and tactical decisions in the supply chain network design (SCND) considering assembly line balancing (ALB) under demand uncertainty. Due to the decentralized decisions, a novel bi-level stochastic programming (BLSP) model has been developed in which SCND problem has been considered in the upper-level model, while the lower-level model contain...
متن کاملOptimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The prop...
متن کاملA robust optimization model for distribution and evacuation in the disaster response phase
Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster per...
متن کامل